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Ii1 Background and Objectives

I The Large Space Structure (LSS) research program was originally formulated in late 1982

in response to the increasing concern that performance robustness of Air Force LSS type

systems would be inadequate to meet mission objectives principally because of uncertainties

I in both system dynamics and disturbance spectra. This lead to consideration of adaptive

control systems, where disturbances and/or plant models are identified prior to or during

control, thereby giving systems designers more options for minimizing the risk in achieving

* performance objectives.

In the early ACOSS and VCOSS programs issues of performance sensitivity, robust-

fl ness, and achievement of very high performance in an LSS system were addressed. These

programs established the need to accurately identify modal frequencies and mode shapes

to acheive high-performance disturbance rejection for optical or RF systems, e.g. , [1].

For these cases, adaptive control mechanizations were shown to be needed to produce the

three-to-five orders-of-magnitude reductions in line-of-sight jitter required by the mission.

'The aim of adaptive control is to implement in real-time and on-line as many as pos-
sible of the design functions now performed off-line by the control engineer. Although it

is easy to configure an adaptive system by connecting an estimator and control design

rule, research is essential to identify the performance limitations of adaptive strategies for

LSS control. The long range goal of this research program is to establish guidelines for

selecting the appropriate strategy, to evaluate performance improvements over fixed-gain

mechanizations, and to examine the architecture necessary to produce a practical hard-

ware realization. The initial and continuing thrust, however, is to build a strong theoretical

* foundation without losing sight of the practical implementation issues.

I 2 Current Status

At the present time we stand at the beginning stages of the theoretical development in

adaptive control. A summary of earlier efforts is contained in the recently published tcxt-

book Stability of Adaptive Systems: Passivity and Averaging Analysis, MIT Press. 1986.

This publication is an outgrowth of research supported under this contract and ir ,',lved a
considerable amount of collaborative effort among several researchers in the field of adap-

tive control. The text discusses adaptive systems from the viewpoint of stability theory.

The emphasis is on methodology and basic concepts, rather than on details of adaptive

algorithm. The analysis reveals common properties including causes and mechanisms for

instability and the means to counteract them. Conditions for stability are presented under
slow adaptation, and the result is shown to be expressed as a frequency domain constraint

on a mix of frequency respones and signal spectrum. These are greatly influenced by user

choices regarding data filters and input spectrum. Some of the issues in the ideal case are

explored in [13], a reprint of which is included in the Appendix of this report.



Under this contract we al-o explored the feasibility of applying the averaging analysis

to the adaptive control of a nonlinear flexible system. We chose a Duffing type oscillator
with a simple adaptive algorithm as a test case. The results were quite promising and have

been reported in [18], a reprint of which is included in the Appendix of this report.

Another approach to adaptive control is to design on-line robust controllers from esti-

mators which produce model sets, rather than a single model estimate usually produced by

the estimator. This estimation problem, referred to as set estimation is the main topic of

this report, and is also a topic of recent research activity.' Under AFOSR support, previ-
ous efforts along these lines have involved linear set estimation, e.g. , [15,16,17,19]. In this

report we show how these methods can be extended to nonlinear flexible systems. Prelim-
inary results are presented for flexible systems with uncertain memoryless nonlinearities
at different locatiolns.

In this report we discuss the "separation principal" between model set estimation and

robust control design. This procedure allows for a more comprehensible approach to adap-
tive control design and differs from its predecessors in that model uncertainty is incorpo-
rated in the synthesis phase of the design rather than in the anlysis phase. By studying
some typical example systems, the set estimation methodology is extended to the nonlinear
ca-se.

The results presented here for nonlinear systems, although of a preliminary and ex-

ploratory character, do indicate the feasibility of the basic approach as well as raising
many new questions which need to be considered in future work, e.g. , what is the appro-
priate robust controller parametrization; how does it relate to model parametrization; how
to iterate on the data if the estimate of model error is too large; what are the heuristics
for experiment design. It is clear that concurrent effort is needcd for both nonlinear set

estimation and nonlinear robust control design - the former cannot be effective without
the latter.

I

'Invited sessions have been organized by Dr. Kosut at the last three American Control Conferences
(ACC) under the title, "System Identification for Control Design". A fourth is scheduled for the upcoming
IEEE Conference on Decision and Control (CDC). In addition a mini-issue is being planned on this topic I
for the IEEE Transactions on Automatic Control. Dr. Kosut is one of the Guest Editors.
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I
i 3 Design of Adaptive Control Systems

There are many ways to design or configure an adaptive control system. Figure 1 depicts
the self-tuning-regulator (STR) configuration [3]. Two feedback processes make it adaptive,
namely: (i) a model parameter estimator, and (ii) a control design rule.

I Model Parameters 0

I ]Control[ _ aramete
]Design I [-ksiatr-

I Control U Plant Y

I
Figure 1: Self Tuning Regulator (STR).

The parameter estimator operates on the input-output data obtained from measurements
(y, u) of the plant system and produces a model parameter estimate 0 E IRP . The parameter
estimate is transformed by the control design rule into a controller parameter p E ]R, which
is then used in a pre-determined parametric controller structure in feedback with the actual
system.

It is obviously very easy to construct an adaptive system: just connect a control design
rule and an estimator together. However, it is very difficult to insure that the resulting
adaptive system will provide acceptable performance. This has been the goal of research
in this area for over 30 years.

3 Roughly, if the true system is in the model set which underlies the parameter estimator,
then the adaptive system will asymptotically reduce the error signal for arbitrary bounded
exogenous inputs (r, d). Technically it is necessary that a a certain (closed-loop) transfer
function is strictly-poitive-real (SPR) [23,11,2], e.g. , H(s) is SPR if it is stable and satisfies,

Re[H(jw)] > 0,Vw (1)

The main difficulty, to put it simply, is that the true system is never in the model set -
there are always dynamical phenomena which remain unaccounted - and unfortunately,
the SPR condition fails to hold. Moreover, the theory based on this property is sufficient
and hence does not predict what will happen if the SPR condition is violated.

Under sufficiently slow adaptation the method of averaging can be applied to expose
a mechanism for stability and instability [2],[27],[3]. This theory replaces the above SPR
condition with a "signal dependent positivity condition" of the form,

R= Re[H(jw)]S(w)dw > 0 (2)

3



I
where S(w) > 0 is a spectral density matrix associated with the exogenous inputs. This

condition is much less restrictive because even if H(jw) fails to satisfy the SPR condition I
(1) at some frequencies, (2) can still hold provided the excitation is concentrated at those
frequencies where Re[H(jw)] > 0. Moreover, if any eigenvalue of R is negative then the

system is unstable. In using the theory for design, the user must select an appropriate I
combination of data filtering and excitation spectrum. This task is similar to problems
encountered in system identification [22] except that here the system being identified is in
closed-loop, which vastly complicates the selction process.

To see this more clearly, consider the function F(0) defined via Figure 2, i.e. , for every
parameter choice 0 there is a resulting parameter estimate denoted by the function F(0).

0 r(0)

mControl _.aramete{_
Design ]I stimato]

Conr U Plant Y

Figure 2: Illustration of the parameter map F. m

It is shown in [24] that under slow adaptation, convergence points of the STR system in
Figure 1 are precisely the fixed-points of Moreover, the fixed-point is stable if (2) holds
and is unstable otherwise.

In summary, the averaging result shows that stability of the (nonlinear) adaptive system

can be deduced from a frequency domain condition (2) which mixes signals and systems.

However, there are some difficulties in utilizing the theory. In the first place, it is no
trivial task to determine the fixed point(s) of the map F, i.e. , those 0 E IR P satisfying
0 = F(0). Secondly, both the transfer function H(s) and the spectrum S(w) depend in a

complicated manner on the fixed-point and it is unclear how to precisely manipulate data i
filters and input spectrum to acheive either a satisfactory fixed-point and/or a satsfactory
transient response in the adaptive parameter trajectory. To put it bluntly, the theory fails

to produce a "user friendly" design method.

If we agree that the fundamantal difficulty in analyzing the adaptive system is the
ubiquitous model uncertainty, then one alternate approach is to configure an adaptive I
control system which specifically accounts for the uncertainty. One such scheme, depicted
in Figure 3, replaces the parameter estimator in Figure 1 with an estimator that produces
a model set or set of uncertainty. This would avoid the major obstacle, namely, that the
ti uc system is not in the model set used for identification. This type of estimator is referred

to as an uncertainty estimator or a set estimator. This differs from the estimator in the
usual adaptive schemes (cf. Figure 1), where a single estimated model is produced, with

4 I



no information regarding its accuracy.

Model Set

Control U Plant 1/

The second change is to use a robust control design rule, i.e. , one that accepts a model set

in the form produced by the set estimator. Under these conditions, if the true system which
generated the measured data is contained in the estimated set, then the adaptive system

is not only stable, but acheives the maximum performance possible given the estimated

set of uncertainty.

Proceding in this way we have transformed the problem of adaptive control design from

analysis with trial-and-error into separate synthesis problems in set estimation and robust

control design. In effect this is a "separation principal" analogous to that in the LQG

I design.

Set estimators should at least have the following features:

e Uncertain Parameters. A capability to account for that part of the system which is
known to be governed by physical laws or able to be described by known functions

dependent on certain constant parameters. The parameters may only be known to
lie within some range of variation.

o Uncertain Dynamics. Able to account for uncertain dynamics for which a parametric
structure is not available or assumed, e.g. , neglected high frequency flexible modes,
uncertain memoryless nonlinearities, etc..

At present, methodologies for the design of set estimators are under development, e.g.

[30], [15], [21], [17],[10],[19], [31]. On the other hand, there is a reasonable maturity of

methodologies for robust control design, particularly for plants with uncertain nonpara-

metric linear dynamics, e.g. , [25], [32], [6,7], [9], [29]. Robust control design of plants with
parametric uncertainty seems still underdeveloped despite some heroic efforts, e.g. , see

I [4,5] and the references therein.

In the remainder of the paper we principally address set estimation for linear and

nonlinear systems. Section 2 provides a review of some recent results in linear set estimation

and somc new results in nonlinear set estimation. Section 3 provides a brief section on linear
robust control of plants with both parametric and nonlinear uncertainty set descriptions.

I!
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4 Linear Set Estimation

Consider the linear-time-invariant model set:

g(O, W) = {G0(1 + AW) : 0 C 0, hIAll00 _ 1} (3)

The set 9(0, W) describes both parametric and nonparametric uncertainty. The para-
metric uncertainty is reflected in the set {Go : 0 E 0} where Go is a parametric transfer

function with uncertain parameters 0 E 0 C IR. The mapping 0 - Go is known but the

exact parameter values are known only to be in some set 0. The nonparametric uncer-
tainty is reflected in the set {A : IIAIIko < 1}. Thus A is an uncertain linear-time-invariant
system only known to be stable and unity bounded in the Hoo-norm, which for continu-

ous time systems is defined as sA Iloo = supw IA(jw)I and for discrete time systems as
IIAlok = sup,,,<, IA(eJw). W is a stable transfer function which reflects the size of the
relative (or multiplicative) uncertainty, i.e.

G-G 0

The above expression suggests interpreting the set 9(0, W) as a set of transfer functions
"centered" at the parametric transfer function Go with a "radius of uncertainty" of GoW.

It is usually possible in a modeling process to arrive at an initial parameter set 00 and
a weighting transfer function W0 . In the case when the prior set g(0o, Wo) is too coarse
to lead to tolerable closed-loop performance levels, then a model set estimator is required
to refine the prior information by making use of measured data. Specifically, we extract
the following result from [19].

TIIEOREM

Suppose that the the measured data set

{y,u:t=1,...,N}

is obtained from the sampled-data system

y = Gu

where G has the discrete-time transfer function G(z). Furthermore, suppose
that from prior information

G E 9(0o, Wo)

and the parametric transfer function in (3) has the structure:

Go(z) = Bo(z) = biz' + --. + bm z - m

Ao(z) 1 + aiz - 1 + + anz- n

OT = [a, ... an b-.bm]

7



Under these conditions, if G is initially at rest, and is either stable or in a Istabilizing fcedback, then:

G E g(O0 , Wo) n 9 (ON, Wo) (4)

where ON is the parameter .,"t estimate,

ON = {0: IfAoy - BoulIN < IIBoWoulIN} (5)

with the N-point signal norm jIxj' =Z x(t) 2.

The above result implies that if the true parametric transfer function is G0 ,.,, where
0tue C IR is the true parameter value, then 3

9 tnie E 0o n ON

A good data set would insure that the new set estimate is strictly inside the prior estimate, I
that is

00 n1 ONC O0

Since both A0 and Bo are affine functions of 0, it can be shown [19] that ON describes
either an ellipsoid or an hyperboloid in IR P, depending on the data. Moreover, although
the set 0 0 nl ON is not an ellipsoid, nonetheless a bounding ellipsoid can be obtained.

A similar result is obtained in [311 for a co-prime factor nonparametric uncertainty
structure rather than the multipli,'ative one used here. More on bounding ellipsoids can
be found in [8] who considered the problem of parameter set estimation with bounded
noise and no unmodeled dynamics.

I
I
I
I
II
II

~I I



5 Nonlinear Set Estimation

The preceding principals of set estimation for linear-time-invariant systems can be applied

to the set estimation of nonlinear systems. We will illustrate the problems using the

following three example systems: (i) an input nonlinearity, (ii) an output nonlinearity, and

(iii) a mechanical system with backlash.

U 5..1 Example 1: Input Nonlinearity

Consider the system shown in Figure 4 and described by:

I y=Gou, i = f(u) (6)

I
U f )u-GI
Figure 4: Input nonlinearity.

Make the following assumptions:

1. The function f(.) is a memoryless time-invariant nonlinearity known to lie in the

sctor If(u) - kul < lu1, Vjul < p (7)

where 6 < k and p > 0 are known constants.

I 2. Go is a continuous-time linear-time-invariant system with stable transfer function
Go(s) and where 0 E lRP are uncertain parameters.

I 3. The measured data set is

{y(t),u(t) : t= ,...,N}

where the time t is normalized to the sampling interval.

I The constants (k, b, p) quantify the uncertainty in the nonlinear function f(-) in much the

same way that W bounds the uncertain linear-time-invariant nonparametric dynamics in

I the previous section. A problem here, though, is that i, the input to the linear part of the

systeni , is not a measured variable. Moreover, the nonlinear function precludes describing

any discrete-time transfer function from u into y. However, provided f(.) is sufficiently

smooth, for fast sampling we have the following sampled-data approximation

y ,_ Goft, 9i = f(u) (8)



where now Go(s) is approximated by the zero-order-hold z-transform

Go(z) =:(1 - - 1 )Z{-Go(s)

This approximation is only valid at the sample times t E {1,..., N}. For example, if f(.)

is a polynomial or rational function, then there certainly exists a (not necessarily small)

region Jul _< p such that (7) holds.

To illustrate the problems in obtaining a set estimator even for the approximate system

(8), suppose that (k, 3, p) are known, and we wish to estimate a parametric model for Go(z).

For illustrative purposes, suppose that Go(z) is in the two-parameter set:

Gz)=Bo(z) =_ bz'1 1 a](9
G(z)- Ao(z) 1 + az-1 b (9)

After some algebra one obtains the following equivalent input/output description of (8):

Aoy - Bou = Boe (10)

where e(t) is an uncertain sequence satisfying

140t1 < 6Ju(t)j, Vt = 1, ...,IN (11)

Since (k,b,p) are known and u(t) is measured, the upper bound on the error sequence
is known at each time instant. Combining the above expressions with prior information
0 C O0, we obtain the parameter set estimate

Oo n ON

where ON consist of those 0 satisfying,

ly(t) + ay(t - 1) - bu(t - 1)1 < lbu(t - 1)1, (12)

for all t = 1,...,N.

5..2 Example 2: Output Nonlinearity

In the above example, the nonlinearity was on the input. Now consider the case where the

nonlinearity is on the output (see Figure 5) where

y=f( ), = Gou (13)

Proceding ws before we now have,

Aoy - Bou = Aoc (14)

10



Go Y f(.)

I
Figure 5: Input nonlinearity.

where now c(t) is an uncertain sequence satisfying

e(t) <- k 6 ly(t)j, Vt=1,...,N (15)

In this case the set estimate ON consists of those 0 satisfying,

ly(t) + ay(t - 1) - bu(t - 1)1 < k - (ly(t)l + jay(t - 1)1), (16)

for all t 1,...,N.

5..3 Example 3: Mechanical System

Consider the mechanical configuration depicted in Figure 6.

I 'a.<,< -°x t (
N\A ACC~4

1:

Figure 6: A flexible rotating system with backlash in the gear-train.

This system represents the case where tortional actuation is applied to a load through
a flexible gear-train. The gearing is shown to occur at the end of the flexible member,
although other combinations are certainly possible.

Neglecting any electronic dynamics, and assuming that the flexible rod is both uniform
and damped, the motion of the rigid body and first tortional "mode" for small angular

I 11



I
deflections can be approximated by the system of differential equations,

JMih = u + D( 2 - y,) + I(y2 - yI)

JGjI 2  -u-D*2-1)-KY- I

JLi3 Nil

u Y2 - Ny3
f f(9) 1

where u denotes the input applied torque, (YIl, Y2, Y3) are angular deflections as indicated
in the figure, y is the relative gear angle, and f(-) is a memoryless nonlinearity arising
from backlash in the gear train. The constants are defined as follows: JM, JG, and JL are
the motor, motor gear, and load inertias, respectively, N is the gear ratio which is greator
than one, and D, K are the damping and stiffness, respectively, of the elastic rod. The
backlash nonlinearity f(-) has the typical shape as shown in Figure 7.

Figure 7: A typical backlash function.

The break-point parameter yb relates to gear teeth spacing and the slopes in the two
regions relate to gear teeth shapes. Typically for IzI > Yb the slope is very large whereas
for IzI < Yb the slope is very small. It is clear that for some positive constants (k, 6, p) that
f() satisfies the sector condition (7).

To illustrate how to compute a set estimate for the parameters of the mechanical
system, suppose that the measured variables are

Y =KY1

and that (K, D) are uncertain parameters, i.e. ,0 =[ K]
Observe that the input to the nonlinear function is

JL..

2 = Y3

12



One approach to describing a model set for this type of system is to approximate either
the input or output to the nonlinear function. This would be like the ideal situations in
the preceding two example sytems. In this case, since y3 is available as a measurement,
the acceleration ih- can be approximated by high pass filtering the measured output y3.

For example, let ( s6 )2s + 1

Y3 Fy3, F(s) S+

where 1/T is sufficiently large so as to capture the dominant harmonics in the acceleration.
Then,

JL

With this approximation the situation is very similar to the example where the nonlinearity
is on the output. However, there is one difference: here the input to the nonlinear function
also contains a term do to u, which can also be approximated by f. Thus, the appropriate

I model can be described by the feedback system shown in Figure 8.

Figure 8: Feedback nonlinearity.

The system is described by,

I =f(O), P=Go ] , =(17)

I After some algebra, we obtain,

JMfL + JGU + yi - NyI A0

where
Ao(s) = JMJGs 2 + (JM + JG)(Ds + K)

The procedure described in Example 1 can now be applied to obtain a set estimate which
will contain the true parameters. Of course the precise conditions under which the true
parameters are in the set estimate involve various approximations. In particular, due
consideration must be given to approximating f by fi.

I
I 13



5.1 Standard Model Structure

Even though the three example systems are fairly general, it is also important to point

out that they do not exhaust all the myriad possibilities. A very general model format, or

template, is characterized in Figure 9.

U y

PO
u y

Figure 9: Standard model

This model form is discussed in detail in [20]. Here we make the following assumptions:

1. PO is a transfer matrix which depends on a parameter 0 E IRP and which has the
block structure:

Y] I I1 PI 2 u18

2. f(-) is a scalar memoryless nonlinearity in the sector,

az < f(z) </3z, VIzI <p

where 0 < a </3.

3. The measured data set is :

{y(), u(t) : t =1,.,

The standard form allows for scalar memoryless sector bounded nonlinearties, but the

measured signals (y, u) can be vectors. Disturbances as well as nonparametric dynamic
uncertainties can also be included by replacing the "feedback" with a more complicated
system and by adding another input.

For the three example systems f is in the sector,

(k - 6)u < f(u) < (k + b)u, Vju < p

where 6 < k.

14



For the system in Example 1 (8),

P° [ 1 oG0

For the system in Example 2 (10),

UPoq= 0  1]Go 0

And, for the system in Example 3 the transfer matrix Po has the block structure (18)

with: DsK

S2 [JAJGS 2 + (JM + JG)(Ds + K)

P12 = AL
S2JL

Ds+K

S 2 [JMAJGS 2 + (JM + JG)(Ds + K)]
N 2  JMS 2 + Ds + KA
2P22 - S2 L 2 [JMJGS2 + (jh + JG)(Ds + K)]

In Example 3 we used the feedback approximation (17) which yields

PO =[0 1

where Go in (17) has the block structure

Go= [Go,1 Go,2]

These examples demonstrate that a very large class of mechanical systems can be captured
by the standard form of Figure 9.

When P j' exists, the input and output to the nonlinear function is given by:

9o = P 2 1 u + P22P'(y- P11u) (19)

-ro P 2'(y- P1 1 u) (20)

We have explicitly used the 8 subscript to indicate the parameter dependence. Thus, the

parameter set estimate follows directly from the sector condition as,

ON = {o : atio(t) :_ go(t) 5,fio(t), Vt = 1,... N} (21)

Observe also that in the case when (u, y) are vector signals, the above will still hold if P 1

is replaced with the pseudo-inverse

p2 = (PP 1 2)' P 1
2

15



I
The standard model structure (Figure 9) can also handle multiple sector nonlinearities

by replacing f(.) with a diagonal matrix nonlinearity

i! = F(y) = diag[fi(yi)---.fp(qp)]

where (fi, y) are now vector quantities. The sector conditions can now apply to each of the

diagonal entries. u
I
I
I
I
I
I
I
I
I
I
I
I
I
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5.2 Disturbance Modeling

To make the model sets more realistic it is necessary to account for disturbances. For
example, consider (8) with an additional disturbance term d(t),

y = Gou + d, u = f(u)

With Go = Bo/Ao we now obtain,

Aoy - Bou = Boc + Aod (22)

where e(t) satsifies (11)
!k-Ie(t)I <_= fu(t)I, Vt=1,.N

I Suppose that d(t) is unknown but bounded by,

Id(t)l < d,, Vt = 1,...,N (23)

In effect both c(t) and d(t) have known bounds and by analogy with the preceding example
we can easily construct (in principal) the corresponding set estimates.

It is obvious though that there are many forms for how a disturbance can influence
a particular system. This leads to considering the standard model with an additional
disturbance input as shown in Figure 10.

d, y

PO
it y

I f(.

Figure 10: Standard model with disturbance.
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5.3 Nonparametric Uncertainty

A more versatile model set would not only include disturbances and sector nonlinearities,
but also uncertain nonparametric linear-time-invariant dynamics. For example, consider
the system described by:

y = G0(1 + AXW)ii + d, i! = f(u) (24)

where f(.) is a sector nonlinearity, d(t) is a bounded disturbance, A is an uncertain transfer
function which satisfies IIAIKo < 1, and W is a known stable transfer function.

Now, reconfigure the system into a "structured" standard form as in [7,26] shown below
in Figure 11.

d, Uy

POu y

Figure 11: Standard model with disturbance and uncertainty.

Here the "feedback" matrix operator X contains all the model uncertainty,

It is the diagonal structure of this matrix operator which causes difficulties in computing
an optimal model set.
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-1 6 Robust Control Design

I 6.1 Robust Nonlinear Control

There are some well developed approaches to nonlinear control design. For example, there
are the classical methods of gain scheduling, analysis via harmonic balancing (describing

function analysis), and the method of feedback linearization. This latter approach is ef-
fectively a generalized gain scheduling procedure. In fact it is a true synthesis method,
that is, a nonlinear control is directly designed from the nonlinear model [14]. The basic
idea is to apply a nonlinear feedback which brings the closed-loop system into a purely
linear form, which has obvious advantages for control design. A difficulty with the method

is that the linearizing feedback requires an exact knowledge of the type of system non-
linearities. Moreover, the control is typically much more complex than a gain schedule,
which bothers many design engineers. However, one can argue that feedback linearization

can give the designer a means to evaluate the limits of achievable performance from a
feedback system. Robustness of feedback linearization to model errors is an open area in
basic research. Some work on robustness to uncertian nonlinearities has been advanced in
the robotics area, where feedback linearization is there referred to as "computed torque",

[28]. Developing robust nonlinear control is an area for some future work. To gain some
* insight into the issues we consider next the case of robust linear control of an uncertain

nonlinear system.

6.2 Robust Linear Control of Nonlinear Model Sets

* The premise is that the uncertainties are described via prior information on the nonlinear
sector and a set estimator which describes the range of uncertain parameters in the linear-
time-invariant part of the system.

As an illustrative example, consider the uncertain nonlinear plant with a linear feedback
control,

y=d+f(y), =Gou, u=-Ky (25)

where Go and K are linear-time-invariant systems, K is the linear feedback controller,
f () is a memoryless nonlinearity, y is the measured output to be controlled, and d is a

disturbance as seen at the output. The control objective is to attenuate the effect of the

disturbance at the output despite the uncertainties in the system model. Specifically, the

system uncertainties are as follows:

* * the nonlinear function f(.) is in the sector,

If(9) - <1 6191, VII s p

e the parameters in the linear-time-invariant system Go are in the set e.

I19



Observe that these uncertainty sets can arise from a combination of set estimation and/or

prior information. From the control design viewpoint the source of the uncertainty is not

relavent.

To analyze this system we make the following convenient defintions:

A(9) f (9)-

So = (1 + GoK)- 1

TO = GoK(1 + GoK) - = 1 - So

Observe that A(.) satisfies the sector condition

* ,(I)I _< ,j1J1 Vl91 < p

The transfer functions (So,To) are the closed-loop transfer functions from disturbance d

to output y and control u, respectively, if the nonlinear function f(-) is replaced by the

identity operator, which in this case is the "nominal" nonlinearity. The nonlinear feedback
system is then equivalently expressed as:

I y =So(d +
S= A(p)

9 -To(d+e)

Now, let To(t) denote the impulse response of To(s), and suppose that there are constants
AY > 1, a > 0, and r > 0, independent of 0, such that for all t > 0,

IT(t)I < Me-a t

I(Tod)(t)l <r

Application of the Bellman inequality [12] yields:

6r

(t)I __ 1 - 3M/a

provided that

I< a

M
r < (1- 6M/a) p

The above inequalities bound e(t), which appears as an additional disturbance. Thus, the

ideal closed-loop transfer functions (So, To) must be shaped to make -(t) small. In addition,

the linear controller K has other goals e.g. ,to robustly stabilize the lineax-time-invariant

model set {G 0 : 0 E 0.
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Adaptive Control of a Nonlinear Osc'"-ing System

Robert L. Kosut" Deirdre Meldrumt Gene F. Franklint

Abstract A slowly adapting feedforward controller is the specific f Dns depending on the control design rule
applied to a nonlinear (Duffing) oscillator. Simulation d the par,-'ieter estimation model set. In this case
results show that the adaptation continues relentlessly ,..n the p. -amieters are held fixed, the system is gov-
to improve performance despite the complex system be- erned by the I system (3) with 0 constant.
havior, i~e. , the system state passes in and out of
both chaotic and multi-periodic attractors, finally settling An adaptive control system, although a special type of

nonlinear system, is nonetheless a nonlinear system, anddown to a "quiet" periodic orbit. An analysis is presented as such one would expect to encounter limit cycles, bifur-based on the method of averaging. Under slow parameter
adjustment it is shown that the source of tile complex be- cations, and chaos. In the case of adaptive linear control

havior is the nonlineariv in the system being controlled, (3)-(4) , these latter phenomena are known to occur as

not that introduced by the adaptation. the adaptation speed is increased (large -y), e.g. , [Mareels
and Bitmead(1986,1988)], [Salam and Bai(1988)], [Cyr et
al.(1983)], [Riedle and Kokotovic(1984)], and
[Ydstie(1986)]. Thus, rapid adaptation alone can induce

I Introduction bifurcating and chaotic behavior.

nAdaptive control systems In this paper we explore the case of adaptively con-
Adatie ecoulssems oriary dieenricall euaiosned trolling a nonlinear system under slow adaptation (small
by the set of coupled ordinary differential equations: .'). As we will see, chaotic phenomena will appear primar-

x g(t, X, 0) (1) ily because of nonlinearity in the system being controlled,
and not because of adaptation. Specifically, we examine ayf(t, X, 0) (2) Duffing system under feedforward model reference adap-

I In (1), x E IR is referred to as the "state" and con- tive control with slow adaptation. A simulation study
sists of dynamical states of the system being controlled, is performed along with an analysis using the method
controller states, and filter states in the parameter esti- of averaging, which has proven to be very successful for
mator. The function g(t,x,O) is determined by the sys- slow adaptation of linear systems, e.g. , Anderson etf tem dynamics and the controller/estimator design. In (2), al.(1 9 86), Sastry and Bodson(1988), kstr6m and Witten-
0 E 11' is the adaptive parameter whose rate of adjust- mark(1989).

ment is governed by a scalar constant -y > 0, referred to asI the adaptation gain, and a function f(t, x, 0) determined
by the designer. Observe that when the parameters are 2 Adaptive Duffing System
held fixed, the system is governed by the nonlinear system
(1) for constant parameter 0. The system to be controlled is the Duffing system:

In the case of an adaptive linearsystem, (1)-(2) reduce (
to, i + ki+x = u (5)

= A(O)x + B(O)w(t) (3) where k > 0 is a small damping coefficient, x is a mea-
sured output, and u is the control input. Prior knowlege

0 (t, X, O) (4) of the damping and cubic nonlinearity is assumed unavail-

where w(t) E IR' consists of all exogenous inputs such able, and hence, we implement the adaptive control:

as references and disturbances, and A(O) E 111"" and OrU =-Or

B(O) E 11nxn are matrix functions of the parameter 0, = 7r(r- x) (6)

Clntegrated Systems Inc., 2500 Mission College Blvd., Santa
Clara. CA 95054 and Information Systems Lab, Stanford University. The adaptive parameter is 0, a feedforward control gain,
Re'search SI pl)ort from AFOSR Contract F49620-89-C-0043DEF -y > 0 is the adaptation gain, and r is a reference com-
and NSF Grant ECS-86-05646. mand which is to be followed by the output x. This adap-tlnformation Systems Laboratory, Stanford University, Start- mn hc st efloe yteotu .Ti p

ford, CA 9-105. tation rule is an approximation of a so-called "gradient"
Modulo irnplementation via a digital computer. rule where the rate of adjustment is proportional to the



negative gradient, with respect to the parameter 0, of an Initial conditzons
instantaneous error function. In this case the exact gra-
dient rule is (0, x, )= (75, 0, 0)

0- (x - r )2 - 0(r - x) integration algorithm49

4th-order Kutter-Merson integration algorithmwhere (, is the instantaneous gradient of x, that isetial with a fixed step-size equal to 1/200th of the pe-
Ox/0. Thus, for constant 9, p satisfies the differential riod of the reference signal r, i.e.

V, + kb + 3x2V = r T = 27/200 (7)

Since d, depends on the unknown damping and cubic
n.onlinearity in the system (5), the pure gradient rule To initialize the system there is no adaptation (7 = 0)
0 - x) cannot be implemented. Using the (crude for the first 250 periods. This is followed by 500 periodsbut simple) approximation k r yields the algorithm of of very slow adaptation (t = .01), and then the remain-(6). der of the time at relatively slow adaptation (7 = .05).

Before studying the adaptive system (5)-(6) , recall The adaptive gain, 7, was chosen to produce slow adapta-
tion to prevent any possible bifurcations and chaos soleythat the Duffing system (5) for constant 0 has been ex-tensivelv examined. In particular, Ueda [Ueda(1980)] as a result of too rapid an adaptation. which, as previ-

men exauie t itu U csadabu- ously mentioned, is known to occur in adaptive systemseven when the system being controlled is linear. Thus,
lated the resulting long-term behavior as a function of the initially after the adaptation begins. Or 7.5 cost. Re-parameters (k. B). For example, with (k, B) = (.08, .2), iiilyatrtl dpainbgnO 75ot e
parether s (k, fie or periodic (k, B) fo- ferring to Figure 1, the initial response of (5)-(6) will

be chaotic. What we hope to see is that, the adaptation(kB.]3) = (.05,7.5), (.25,8.5), or (.1, 12.), the attractorsare III Chaotic.' brings the system to a more quiescent condition, which
in fact is what occurs. Figures 2- 3 show the results of

As an example, for (k, B) = (.05, 7.5), Figure 1(a) dis- the simulation over 4250 periods of the reference, i.e-
plays a plot of points of .(t) vs. x(t) at 900 27r-periodic for 0 < t < 4250(27r).
strobe times, i.e. , t E {27rk : k = 1 ... 250(27r)}. Such
a lot is referred to as a Poincare' section. Figure 1(b) Figure 2(a) shows values of x and 0 at the 1-period
shows a corresponding time history of i(t) vs. x(t) for 50 stobe tie t E {2crk ' a 1. ese Fre 2(b)mperiods of the reference u =7.5 cost, i.e. ,t C [0, 50(2,-)]. shows the (x, 0) Poincare' section at these strobe times.

iven Note that time increases as 0 decreases in this figure. The
Given the quite complex behavior of the system (5) plots show that as 0 is adapted, the system passes in and

when 0 is constant and r is a sinusoidal reference, it is to out of chaotic and periodic behavior. Specifically, reading
be expected that if 0 is slowly adapted, then the system Figure 2(a) or (b) from left to right: (initilly) chaotic
(5)-(6) will pass through regions which contain chaotic - 3-periodic - chaotic - 2-periodic -1-periodic -
and/or multi-periodic attractors, chaotic - 3-periodic - (finally) 1-periodic. Despite this

complex behavior, the adaptation of 0 continues to im-
prove performance. In fact, as we shall shortly demon-

3 Simulation Results strate, the adaptive parameter asymptotically approaches
a small neighborhood of the constant value of 0 which

i minimizes the average of (x - r) 2 . This is precisely the
Siiulations of(5)-(6) using MATRIXx software were per- desired property of the so-called gradient algorithm (6).
formed under the following conditions:

Figures 3(a)-3(k) show samples of the system statef reference (0, x, i) from four perspectives:
(1)upper left: 5 periods of phase plane (i, z).

da"' gk .05 (2)upper right: 5 periods of of (0, x, x) vs. t.

adaptation gaznt (3)lower right: A crude spectral decomposition of x(t)
over 5 periods using the discrete Fourier transform,

0 0 <t < 25(2 7 r{0 01 250(2,) <t ) x(kT) exp jwkT
.05 750(2,T) < t < 4250(27r) -N Nk-I and reprints of some of the results in [Ueda. 1980]

can be found in many recent texts, e.g. , Thompson and Stew- with T = 2-/200 from (7), N = 5(2wT)/T+ 1 = 1001, and
art( 196), Moon(198S). w E {.05k : k = 0, 1 . 00}.I



(4)lower left: An (x,0)-Poincare' section over 300 pe- Substituting into (8), equating coeflicients of cost,sill t.
riods, the last 5 periods being those in the above plots, and neglecting higher harmonics gives:
Observe that time t flows in the direction that 0 deceases.

Comparison of the initial chaotic phase plot in Fig. 3(a) 4A kb -(1-
with the final periodic phase plot in Fig. 3(k) shows a 3
significant improvement in performance as exhibited by 0 ka + (1 -4cj)
the spectral plots. e-2 = a 2 + b2

These formulae can be found in many texts, e.g. , [pg.
4 Averaging Analysis 29, Hayashi(1964)]. A more useful form in our case is

to parametrize a, b, 0 in terms of c, the magnitude of thel

In this section we provide an analysis of the simulation hroi epne hs

results using the method e, ,vecraging. Following the a = -c(1 -3 c2)/ 2 (  4 2)2
I approach described in Anderson et a1.(1986), let xz(t,O) +/ --T_ )

denote the frozen parameter state corresponding to the 4 ev2 + ( c),2(4
adaptive nonlinear system (5)-(6) . That is, for constant 0 = (c/a) -"+ 1 C2

4

Ta0, hn(t, 0) satisfies the forced Duffing system:

3 Substitution into (12) gives,
+x k + -x 3 = 0,4cos t (8)

Then, tie pamragzd parameter system" is defined abs so- i(t) = t (15)

W utions of tie autono ous s yste i of the2imultio
rstui t h g(9) Recall that the adaptive algorithm is designed to approx-I ap ro sri i d imately minimize

adater nnierssee()().Ta s for constant. ca)O, 1 c)

V(O) = avg ,()ss tfe u g s(16)

f~v() av jr()[r() - r(-,fflUsing (14), we also havewith avg {-) denoting the averaging operation 1 (2) 2ca(g i3c2)

C2 4( -17

I if T  VO = 2 4a- 2 + (I - q,2)27
av--oo l =hm 0 x(t) dt (11)_k + (  4 {')

Figure 4(a)-(b) shows plots of (yf , 0, V) vs. c on dif-
The method of averaging tells us (roughly) that for all ferent scales.- The equilibrium of the avrgdsse,0,

the "vcragd parniete systm" i defiedvarso-efsystem(15

small > 0, there exist solutions 0(t) of the adaptive satisfies fem(0) = 0. The expanded scale in Figure 4(b) re-

system (5)-(6) which are within order--y of equilibria of the veals that (0, ) = (.5878, 1157). These predicted valuesaveraged system (9) and which inherit the same stability are in close agreement with tile simulation results, i.e.

typemeo region of attraction from Figure 3(k), (, E)m (.577, 1.25). Note that m-fi

To apply this to the simulation example recall that is identical to dO/dt in the averaged system (9). Value
I t ot th aefrom the simulation are in general agreement with the

r~t)= Acostwit .4 0.. Hecepredicted values in Figure 4:
fv)(0) = A [c - a(0)] (12),, 0 . . (17)

I m tm -.0032 -.0036 -.0031 .0000

where a() is defined for constant 0 by vf -1 00s6 -.0038 -.0032 .0000

T a(O) = 2avg erg(n , 0) cos(.) t (13) Figure 4(c) reveals that the equilibrium of the averaged

ssstem is stable because df(7 ,/dO is strictly negative (al-
Thus, a(O) is essentially a Fourier serie coefficient corre- though small) at the equilibrium. For comparison to the
spening to e -periodic component or the frozen pa- optimum, Figure 4(d) shows a plot of V vs. 0. Observe

I aee ouin ~,0.ta V(6) = .66 whereas the optimum, wihoccurs at

To determine a(O), consider the case where t(t, 0) is 0pt = 1.9, gives V(0o(pt) = .62. Hence, tile equilibrium
we applyisato the sule am ple of the averaged system is close era e optimum, which

11~~peice valuesate in Figur 4:elrmnc

Iimplies that the simple gradient adaptation rule is well

x(. 0) = a( O) cos t + b(O) sin t approximating e th true gradient.

sytmi!tbebcueda/d ssrcl eaie(l



Vigure 14 also reveals that the equilibrium has a large S. Sastry and N1. Bodson, Adaptive Control: Stability, Conver-

(1e_ 1 -1 of attraction, namely, for c E [1. 1, 2.41 or equiva- gence, and Robustness, Prentice-Hall, 1989.

letitly 0 E [.55, 80]. One can not immediately conclude J.M.T. Thompson and H.B. Stewart, Nonlinear Dynamics and

that the adaptive system inherits this region of attrac- Chaos, Wiley, 1986.

tlool because we have only examined the averaged sys- Y. Ueda (1980), "Steady motions exhibited by Duffing's equation:

tern corresponding to an almost pure harmonic solution a picture book of regular and chaotic motions," New Ap-
proaches to Nonlinear Problems in Dynamics, P.J. Holmes

(11). Su per- and sub-hiarmonic responses would in prin- (ed.), pp. 311-322, SIAM.
cija have to also be evaluated, and such formulae ex- B.E. Ycistie (1986), "Bifurcations and complex dynamics in adap-

it. e.l. , [llavashi(1964)j. However, the spectral plots tive control systems," Proc. 25th IEEE CDC, pp.2232-2236,
inFgres 3(a)-(k) show that in most instances the har- Athens Greece, Dec. 1986.

eiicrsponse tends to dlominate. This lends credence
t, 'i' cojecture that tile adaptive system has a region

o i.rctiori whiich is well approximated by the region of -
0 4.

at: cinof thle averaged system corresponding to the .

liinuc frozen parameter system solution (14). Again, 2 -2I liarson of predicted values with the simulation data 0
p in in Figure 4(a) tenid to support this claim. The -2 -2-

p-ta p~lots ako show that the chaotic behavior can be -

vitIo sorn extenrt as "noise" corrupting the harmonic - 345£--4- 024

Co cldng Re aksIori r+.0'K + x- = 7.5 cos t. (a) IjTeda's chaotica ii i-

5~~~~ ~ ~ ~ Co cu igRe ak ' 00 2. periodic strobes: (b) Time history over .50 periods.

Il- ulnlatin results are encouraging and support theI ,, of asimply constructedI adaptive control to minimize
tiepoterntially deleterious effects of uncertain unmodeled(c . ,

to ina rities. Thel( mrethod of averaging is shown to pro- 2, :.I kl a oodi qualitative prediction of the system behavior
(ite e lieof chiaotic and multi- periodic phie-
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Closed-Loop Identification via the Fractional Representation:
Experiment Design

Fred tIansen Gene F-anklin t  Robert Kosutl
Sandia National Infom-tatiolt Systems Laboratory Integrated Systems Inc.,

Laboratorics Stanford University Stanford University

plant input and noise correlation and to obtain solutions directly
Abstract in terms of the loop inputs and the initial controller, variables

An important aspect of system identification is tie which are potentially at the designer's disposal.
problem of experiment design. This paper uses a fractional We assume that during the identification experiment the plant
representation approach to state and solve the closed-loop is in stable closed-loop control and that the initial stabilizing con-
experiment design problem in terms of variables which are troller (Co in Figure lb) is fixed and known. As an experiment
at the designer's disposal: the closed-loop inputs and tile design objective we use that proposed in 16]. It assumes that theinitial controller. Results of computer simulations are pre- estimated plant will be used to design a new controller and at-
sentcd which compare optimal versus several sir-optimal

ilcittilicaition cXl,,rinwnts tempts to minimize errors in the closed-loop dynamics due to the
new controller being designed for the estimated plant rather thani
the true plant. We present the optimal closed-loop input spectraIntroduction which minimizes this objective subject to power constraints on
the loop inputs, the plant input and/or the plant output. To our

lihe iiroblei of systei idenrtification is to estimate tile unknown knowledge, this is tile first time the closed-loop experiment de-
parameters of a dynamical system or pilant from measurements of sign problem has been solved directly in terms of the loop inputs.

sinut and output as shown i Figure La. In the figure, u We also derive the optimal initial controller (for use during the
systeimsaio inputmnt aor outhe ass show the Fiur Iontrin oin hefgue

put and w is an unmueasurable system noise. Experiment design is power in the plant input and output. This result is a generaliza-

the problem of choosing the experimental conditions (e.g. input tion of the results in [7].

signal u or sample time) to optimize the results of an identifica-
tion experiment. Ii the case of open-loop operation, this is a well (R, S) Parameterization
studied problem, see (1, 21 and references therein. Unfortunately,
most actual identilication experiments are conducted while the The results presented in this paper are derived by means of the
system is operating under closed-loop control (Figure lb) and fractional representation [3, 4, 5]. This theory represents both
directly applying existing open-loop results to the closed-loop the plant and compensator as the ratio of stable coprinme factors
problem generally gives unsatisfactory results. Open-loop tech- and has been used extensively in compensator design, for example
niques can take into account the loop induced st-t correlation [5, 8].
oily at the expense of greatly increased complexity and gener- Let P0 be a noise free plant and Co be any initial compensator
ally yields a result ii teriins of the plant input u, a variable which which stabilizes Po. Express Po as No/Do where No and Do
is not at the designer's disposal. In this paper, the fractional are stable and coprime (share no unstable zeros) and similarly
representation [3, 4, 5] will be used to avoid the problem of the express Co as the ratio of the stable coprinie factors X 0/Y0 . Theni

*Sapported by the teparrncnt of Energy Cqntract DF AC04-7GDQ7.89 all compensators which stabilize P can be shown [3, 4, 5] to be
?Supported by NSF Grant ECS 85-12041 of the form Do
ISupported by AFOSR Coutrat F49620-89-C-00I3DEF and NSF Grant CQ - , (1)ECS-86 0.5646 Yo0 - Q NO

where Q is stable. Conversely, CQ, for any stable Q, will stabilize

w P.
By duality, all noise free plants which are stabilized by a given

U -p compensator can be similarly parameterized in terms of a stable
parameter, say R, see [9]. In [10, 111 it is further shown that the

I D noise dynamics of all plants stabilized by a given compensator can
also be parameterized, by a stable, stably invertible parameter,

(a) S. These results are restated below.
r2 The standard plant representation for identification is

-- : y = Gu + 1w. (2)

ID where u, y and t are the plant input, output and noise respec-
tively. G and II are the plant input/output and noise dynamics

M respectively. Assuming that P is stabilizable, then, without lossI (b)of generality, P can also be represented as
Figure 1: Block diagrams of open-loop and closed-loop system

identification problems. P : Dy = Nu + Mtw. (3)



Experiment Design Problem3 where NID is a copritne factorization of G, and Al is both stable
and stably invertible. Define the triplet (D,N,A) to be the As an experiment desig objective, we use one suggested in [6]

coprime factorization of the plant P. Then, it can be shown which is oriented specifically toward identification for the pur-

fill that a given plant P with coprinie factorization (D, N, M) is poses of controLr design. Assuming the estimated plant is used

stabilized by the compensator C0 if and only if it can be expressed to design a new controller, this objective seeks to minimize errors

as in the closed-loop dynamics due to the fact that thc controller
P.5 frs) : y = G1u + (,?,s)Tw, (4) was designed for the estimated plant rather titan the true plant.

We make the following assumptions concerning the plant iden-

where tification experiment.

GI= -No + RYo _ N(5) 1. The true plant, PC, is known to be a member of some known
Do - RXo D set H. This set is such that there exists a robust controller

S - (6) which stabilizes all plants in 1.

D0 - 2. During the identification experiment, the plant is controlled

R is stable, S is stable and stably invertible, and Xo, Yo, No, and by a fixed initial stabilizing controller, Co, which stabilizes
Do are as defined previously. The parameters It and S are easily all plants in I. Co is assumed known.

shown to he 3. After the identification experiment, the estimated plant,
R - DON - NOD (7) f), is used to design a new controller by some pre-defined

XoN + YoD design rule C = D(P).
I Xo N0 + Y Do .

s - oN + YoD / 1. (8) The objective to be minimized is defined as
XON + Y0D

Figure 2 shows a block diagran representation of P(R/s)" = . i17, 2WTd (9)
Note that the parameters (R,S) form a subsystem within the

plant: 1 = Ro + Sw. It is the properties of this (R,S) sys- where E. is the expectation operator with respect to tile plant

tern which simplifies the closed-loop experiment design problem. noise, TV is a frequency-dependent weighting function, and AT,
These properties include: is the error in the closed-loop transfer function from ri to y (see

Figure 2) as a result of C being designed for 5 rather than P,.
I. R and S are the only unknowns in the plant/loop. The Thus

identification problem can be restated in terms of estimat-
ing (R, S) rather than (G, II). 1I - C C (!0)

2. The (R,S) system operates in open-loop. Tile gain from fi where G, and d are the I/O dynamics of the true and estimated

to a is itecesarily zero. plants respectively and
We use a general power constraint on the signal a:

3. TIhe input of thrc (R,S) system is a = Xor1 + Y'or acd

1s thus dependent only on the closed-loop inputs and the [ 'Wdw < K
compensator. In particular, a is independent of both tire
true p!ant and the plant noise, where 1D,, is the power spectral density ofo and W. is a frequency.

dependent weighting function.

Unfortunately, this objective-constraint pair cannot be solved
r directly. We therefore approximate the objective following tire

r- C0-- o No E Do' procedure described by Ljung in [2, 121. First let Cc= V(Pi) be
S-- the controller designed for the true plant. Let X 1 Y, (D, N,, M,)

, S and (b, /V, M1) be coprime factorizations of Ct, P1 and P5 respec-

(iT S) tively. Finally, let (Rt,S1 ) and (A,. ) be the (R,S) paraineteriza-

System R tions of P, and 75. Assuming that tile plant estimate 7 is "close"
to tire true plant PC (in the sense that AR = Rf - it is small)

YO X0 and tihe design rule V is continuous, then it is shown in [11] that

IAT,, 12 can be approximated to first order in IARI by

Figure 2: Closed-oop block diagram showing tIe unknown plant ATrI' = WnJA

as a bridge centered on the (R,S) system. where XtY(XN 1 +YoDc) 2

These properties are easily verified using (4), (5), (6). Taken VR = (XTN, +YjD 1 (X o 'YoDo) (12)

together, these properties allow the identification problem to be Thus, the J1 is approximately
restated as one of estimating (R,S) from a and Pl rather than
estimating (G,H) from u and y, thus transforming the closed- J= f- [£{IAR 2)WRWT d  .

loop problem in an open-loop problem. In addition, property 3 f-

indicates that a is dependent only on the closed-loop inputs and Ljung shows in (2] that CEIARI2 can be approximated asymptot-
tile initial compensator, quantities which are at the experiini t ically for large it, large N and small n/N by

designer's disposal. Therefore, any experiment design results for
tle (R,S) system which gives specifications on a will also solve c.ARI2 - n i,__ (13)
t* e closed-loop experiment design problem. A 4(1



where n is the order of the plant model in the identification algo-
rithm, N is Lte number of data points used in the identification 4,,W [ t' I1

dnd 4D and ab. are power spectral densities of w and o 12]. Thisfr , _ ____I _______

approximation assumes that identification algorithm is a PEM
(Prediction Error Method) type, that the (R,,St) system is in 4f , ,, dw < K I Yor[ 2 W,

open-loop and that the true model is in the model set (i.e. no _--_ _

unniodeled dynamnics). Total input power
Collecting everything except 4). into a single objective weight-

ing function, Wob,, the final design problem becomes:jt' IN 2Wu"

* (14) D,, IV, dw < +
M in im iz e: J , . " - N ~ D~

with respect to 4 ,, and possibly Co subject to the constraint 4IWWwd < K NXo-+DYo 4 W.

- ' K)d _< (15) Table 1: Several possible constraints which can be put in the
where form (15) and the corresponding 1oV,.

41,,1 = 2 Is,!2'PwT. (16)
Solutions to this design problem are discussed il the *fllowing Loop Input Design

section. The problem of minimizing (14) with respect to €o subject to

(15) is a standard minimization problem which admits a closed

Optimal Designs form solution [2]. The solution is

We consider two different design problems. In one, the initial con- .b 7 . (20)
troller is assumed fixed and we obtain the set of optimal closed- V
loop input signals. In the other, we find both the optimal initial where -y is a scaling constant chosen so that equality is obtained
controller and the closed-loop input signals. We first consider the in the constraint. The optimal spectra for the closed-loop inputs
conrstraint in moore detail. r, and r2 must therefore be such that

The C jnstraint 4.,f = IX0 12  or1 ,ot + 0 (21)

Often the loop inputs represent physical quantities which need to Thus, the optimal closed-loop inputs are characterized not by
be constrained during the identification experiment. A constraint a single pair of spectra for r, and r2 , but rather by the set of
on a does not directly yield a constraint on r, and r 2 since the non-negative definite solutions to (21). This solution set can
inverse map from o to rl and r 2 is not unique. ilowever, if the be shown [11] to be independent of the particular choice of the
power apportionment between ri and r 2 is determined a priori nominal plant P0, and coprime factorizations for P0 (No/Do), for

* then (15) immediately becomes a constraint on the loop inputs. P, (D,, N,, M,), for C, (X,/VY') and for Co (Xo/1).
For example, suppose that the loop is to be driven from rT The solution givei by (20) and (21) has the disadvaLntage that

only. Then, a = Xorl (with r2 = 0), and a general power con- it depends on the true plant through Wtbj and, in some cases,
straint on rl of the form W.. Though this problem is shared by most other experiment

2 V- , (design solutions in the literature, it severely limits the solution's

1 (dpractical utility. To address this, we propose to restate the origi-
is accomplished via (15) by using the weighting function nal design problem in terms of an average over all possible plants.

The plant has been assumed a member of a known set II. We
vo = XJo I I . (17) further assume that the true plant is a random variable with a

Likewise, if only r2 is to be used to drive the loop, the appropriate known distribution within that set. The averaged design problem
Choice of lV, ill (15) is can then be stated as:

, = I 2 W, (18) Minimize Jt,,w = ,. d, (22)

Also, A constraint on the total power in the loop inputs is accom- subject to the average constraint
plished by Setting

(max{Xe(,,), go(.))- (19) J * < K , (2:3)
W.=Y~aJ o(w)1))-lr (19 1

where it has been assumed that each input (r, or r 2 ) will be used where Cp, is the expectation operator over all possible true plants.
only at those frequencies where it has the highest gain to the Both expectations are assumed finite. Therefore the expectation

* internal signal a. These weighting functions is listed in Table 1. and integration operator call be exchanged and the solution is
It is also common for the loop inputs to be non-physical numn- easily shown to be

bers somewhere inside a feedback control program. In this case
constraining the loop inputs has little meaning and it makes more *o,op-w = V -" (24)

* sense to constrain the input and output of the plant itself. De- -PW *
note that portion of u and y which is due only to the loop inputs In the rest of the paper, this spectrum will be referred to as the
as u, and y,, Then, by the proper choice of W, (15) can also "optimal averaged spectrum". Note that this is not simply the
be used to constrain the power in u, and y_* See 111 for details. result of averaging the optimal spectrum over I1.
These weighting function are also listed in Table 1.



m
Controller Design This result contains, as special cases, two previously pub-

lished results by Ljung and others (2, 6, 7] on optimal controllers
The previous section considered the problem of finding the opti- for closed-loop identification and shows them to be the extremes
mal closed-loop input signals given a fixed initial controller. In in a continuum of such design problems. In [2, 61 the authors
this section we will consider the problem of finding both the op- show that if die constraint is placed on u alone then open-loop

* tiiial closed input signal and the optimal initid controller. The operation is optimal for plant identification, assuming that the
special case considered is that of the design constraint being of plant is stable. By a similar analysis it is shov;i in [7] that a
-LQG-type" on the power of the plant input and output. In plant output constraint implies a minimum variance controller
particular we will is optimal, assuming that the plant is minimum phase. Both of

Wob these results are special cases of the solution presented here. If
Minimize Jt - - 1 dw (25) a = I and b = 0, the constraint is on u and minimizing JmQmi

yields the "high cost of control" solution (open-loop operation
with respect to both Co and o, subject to the constraint when P is stable). If a = 0 and b = 1,the constraint is on y

and the optimal C0 is the "cheap control" solution, (the mini-

[(a', + b2' _)d,,n < K. (26) mum variance controller when P is minimum phase). Hlowever,
- the solution presented here is valid if the plant is unstable or

First note that since the loop is linear, the constraint can be non-minimum phase and for the continuum of values of a and b

restated as between these two extremes.
The original constraint (26) specifies a maximum on the total

(a24'_ +04",)d < K-f (u2 'FS1 -0-,,)dw = Kr. (27) power of u and y. The LQG controller, merely seeks to minimize
- the noise contribution toward this imaximumm leaving a-s much

where K, is defined as shown. As in before, u, is tLat compo- power as possible for the "signal" coitribution of o. Thus this

nent of u due entirely to the closed loop inputs and u,. is that solution call be interpreted as using that Co which maximizes

componnt of u due to the plant noise w, likewise with y, and the signal-to-noise ratio in the signals u and y This solution

y_ . From Table 1, this can be expresed iii the formi of (15) with also has the implication that tihe initial controller is important
only in the case where the constraint is simall enough that time

.2N 1Do 2 + bYoDi - 2 plant noise makes a significant contribution to A.~o N N + Yo l), 7  (28 )

From the plevious section, the optimal 4), for a given Co is Simulations

5 (29) To illustrate this experiment design technique we offer the fol-
ooqCjco j " -9 lowing simulation examples. In these simulations, the plant is

stabilized by an initial fixed controller and is idenitified from 500
where -y is chosen such that the equality is achieved in the con- input-output data samples. Tle final estimated plant is used to
strailt. Thus -Y is design a new compensator. The resulting closed-loop transfer

functions are calculated for the lootps containing the iew com-

7 = r W ' • (30) pensator and the true plant T,,, and the new compensator andI-,- T, V ifthe estimated plant, To. Finally, the simulated experimental ob-

which implies that the minimum J1 for any given Co is jective is obtained by averaging the iintegral squared difference
betneen Tp. amid Th over 100 independent simulations. Note

S(i' V W that this is the original objective (9), not the approximation.

JU,, ICs,,W. d-)_ (31) The set of plants we consider was first suggested in [131 as
Er a benchmark problem for system identification, adaptive control

Mininiizing this with respect to Co will yield the optimal initial and robust control. The continuous time model is

comp,!nsator for the identification experiment. Using (16), (12) 1

and (28), V4YbjW,, becomes 9 = . 2 - 2 + 2w, s + w2  (

W N1 = 1 X+ W('D 2 The unknown parameters in the system are w,, the natu.al fre-o = "W(a 2ID 2 + YL NI)(XN + D)2 • quency, and f, the damping ratio, and are assumed to be in the

The ilmportant point is that this product is independent of the intervals, 1 llz < W,/2x < 2 Ilz
initial compensator C0 . Thus, the only term in the cost JI.nkn'IC .02 < { < .1 (34)
which is a function of Co is Kr and Ji,. . 1C. will achieve a mrrr-
imum when K, achieves its maximum. K, is maximized when These uncertainties comprise the set ll. When necessary we as-

sume w, and f are uniformly distributed. We simulated two

JLQG = (a2,, + b204,)dw (32) particular planrts in this set; P, with (w,,f) = (lllz,0.1) and
P 2 with (w,,) = (2Hz,0.02).

is minimized (see (27)) which is the precisely the LQG prob- This plant was transformed into a discrete plant assuming a

len. Therefore, the optimal controller to use during the during zero.order-hold and a sampling rate of 20 iHz. No noise model was

the identification experiment when the design constraint is of included [13]. We assume the full plant dynamics (irput/output

"LQG-type" is the associated LQG controller. The optimal loop and noise) are of the form:

input spectrum is given by (29). Note that this result is inde- P (1 + arz - I + a2z - 
2 + a3 Z- + a"z- )iY

pendent of the weighting function in the objective, WT, or the (61Z- I + b2z - 2 + b3 z - 3 + b4 z- 4 )u + W (35)
* new-compensator design rule D.

I



where w is white Gaussian noise. All eight coefficients are esti-re: t-Ti("-I mated. The initial contrtoUer is .

1 -2.69z- 1 + 2.53z-" - .84 1z -3( 6 . ._J t ... - . . .- . .---- 'k.... ... ..

Co 1-.725z- .175z - 2 
-

.00
925z

-3
-(36) P1.- -- - - Pl,-..

which stabifizes all plants within the uncerta ly (34). With this -- -A__ .__ _ _ _

controller the closed-loop has essentially the same resonance as 0
tihe plant. This resonance will have a noticeable impact oil thle Iog(Froquency (11iad

fiial experinet designs. Figu~re 4: Optimial r.2 spectra assuming the true plant to be "P,
and 2, the averaged optimal spectrum and a white spectrum.
Optitnal spectra calculated for a power constraint on rl.

/ ; I Y, spectra assuming tlhc true plant to be P', and P2, Lte optimial av-
eraged spectrumu and a white spectrum, all of unity power. Note
how the optimal spectrum for P2 notches out the plant's reso-
nant frequency. Recall that when Co is used, the plant and loop
have the same resonance. There[ore, if P7 is the true plant, the
gaiu from r2 to both u and y will be large at 2 liz; little power
is required at that frequency to excite the plant, thus the notch.

i-,igurtc 3: Finla ,oitiol sytent in S"ITR co.figuration

The etimated plant is, uscd to design a new controller in the --

configuration shown in Fig t'e 3. Letting L', be the estimated ? - "
plant's natt d frequency, A ando 13 are chosen so that: l-L

a) tie resonant poles are radially projected inwards by a factor o --
of .95 (the "contiol" pol.-s) and .85 (the "estimator" poles), J - 'tahot1 3 - -0 White

as+

b) the double integrator poles are moved to a natural fre- - + Avc.

quency of (.3 + .3u3,) with a damping ratio of .85 ("control"
poles) and a natural frequency of (1 + v5,) with a damping
ratio of .9 ("estiniator" poles). 0 32

log(Meau squared value of I';Z)

E is then selected so that the four selectable closed-loop ze- Figure 5: Simulation results obtained when true plant is P, and
ros coincide with the "estimator" poles specified above. This
choice makr the overall control design equivalent to a state- loop is driven by spectra shown in Figure 4.
estiniator/state-variable-feedback controller. This particular de-
pendence on tD, was chosen to obtain a faster closed-loop with r
the faster plants (those with higher resonant frequencies).

Expcrinieuts are designed to minimize - "

J 1 Ia. nt -

This new controller is slightly more general than that considered . White -

earlier due to the presence of the pre-compensator. ly similar Plat I

arguments this objective can be approximated by

I dit - d,j -4"-

-2 -1 0
log(Mcan squared value of r2)

where Wobi is

Figure 6: Simulation results obtained when true plant is P2 and

Woj = NAS,"I IBA(XoN + YoD,)' (37) loop is driven by spectra shown in Figure 4.i (BN +ZAD,) ---- (XoNo-Yo~o)l B, L 1

Two parallel sets of simulators were run, one with the true
and At, B,, and E, comprise the new compensator designed for plant being 7, and the other with P2. Figures 5 and 6 show the
the true plant. All other notation is consistent with that used in average experimental objective versus input power at r7 for each
Section 2 with B, and A, corresponding to X, and Y respectively, of the four spectra in Figure 4. In each simulation the plant was

The first set of rcsults we present are for the case where a also driven by a white noise at w of power A = 10- 4.

power constraint is placed on the loop input r2. Note that this In both sets of simulations, the optimal spectra for the true
constraint is one which can not be addressed by previously pub- plant provides the best plant identification, a factor of 3 better
lished experiment design techniques. Figure 4 shows the four than a white input is 71 is the true plant and a factor 2 better if
input spectra uzed in the simulations. It includes the optimal P2 is tle true plant. Note also that if P2 is the true plant, using a

I



optimlal input srpectrumn ables which are at the designer's disposal, i.e. thc closod-loop)
In a final se fsimnulations we tested the optimial initial con- in puts and thc initial compensator used during tlic experinment.I troller result presented earlier. In this examplle we choose the Previous solutions yield specifications on tlic plant input, a vari-

sit1tob able which not at the designer's disposal. Tlie solution for the
* optimal initial compensator contains two previously published]_(.5lDo + .54,,)d-) < KC results as special cases and shows them to be thle cxtrmnlcs of aI continuum of such solutions. We also presented simiulation re-

fr s s'wo E 'Ilie olitinial iiiitjal controller is the LQG conitroller sults which demonstrate the use of our method.
to inilimize the control cost In this paper, we have not addressed the important problemi of

uiiinodeled dynamics. However, we believe that this method of-
I'' (.4, -+ .5l' )iL'fers advantages hecre as well. For example, the weighitiiig fuinctioni

W--can be selected to dc-emnphasizre those frequeiicies were the

h-re~ ~ 0, Po ~ r oeprtions of it andi y, respectively, due u nniodeled dynamics are dominate. Furthermore, 'lie fact that
* tt~.-liinit ois alne. o tst his esut w perormd sns- the ( R, S) system is necessarily stable simplifies the techniques
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